
www.manaraa.com

VOL IX, No. 2, 2008 188 Issues in Information Systems

ISSUES AND CHALLENGES OF AGILE SOFTWARE DEVELOPMENT WITH
SCRUM

Juyun Cho, Colorado State University-Pueblo, joey.cho@colostate-pueblo.edu

ABSTRACT

Agile software development methods have been
developed and evolved since early 1990s. Due to the
short development life cycle through an iterative and
incremental process, the agile methods have been
used widely in business sectors where requirements
are relatively unstable. This paper explains the
differences between traditional software development
methods and agile software development methods,
and introduces the characteristics of one of the
popular agile methods, Scrum. Finally, the paper
illustrates issues and challenges discovered through
an in-depth case study in a company which has
employed Scrum for many projects. The insights
presented in the paper can be used in organizations
that are in the process of agile software development
using Scrum.

Keywords: Scrum methodology, traditional software
development, agile software development, empirical
process.

INTRODUCTION

Traditional Software Development Methods
(TSDMs) including waterfall and spiral models,
utilize extensive planning, codified process, rigorous
reuse, heavy documentation and big design up front
[2]. Due to these characteristics, TSDMs are often
called heavyweight development methods. The
TSDMs are still widely used in industry because of
their straightforward, methodical, and structured
nature [6], as well as their predictability, stability,
and high assurance [3].

Though many TSDMs have been developed since the
waterfall model to provide significant productivity
improvements, none of them are free from major
problems including blown budgets, missed schedules,
and flawed products [3, 4], and they have failed to
provide dramatic improvements in productivity, in
reliability, and in simplicity [4]. Due to constant
changes in the technology and business
environments, it is a challenge for TSDMs to create a
complete set of requirements up front.

As a remedy for the shortcomings of TSDMs, a
number of Agile Software Development Methods

(ASDMs) including Scrum, eXtreme Programming
(XP), Crystal, and Adaptive Software Development
(ASD), have been developed and evolved since
1990s to embrace, rather than reject, high rates of
change [24]. Such new approaches focus on iterative
and incremental development, customer
collaboration, and frequent delivery [18] through a
light and fast development life cycle. Although many
positive benefits of agile approaches including
shorter development cycle, higher customer
satisfaction, lower bug rate, and quicker adaptation to
changing business requirements have been reported
[3], there have been few empirical field studies on
issues and challenges of ASDMs. Therefore, the aim
of this research paper was to discover the issues and
challenges of one particular agile method in practice,
Scrum, through an in-depth case study in a mid-sized,
web-based development projects for government.

The remainder of this paper discusses the differences
between traditional methods and agile methods, and
then presents a brief history, framework, and
empirical process of the Scrum methodology. Finally,
the paper discusses issues and challenges of the
Scrum methodology discovered through an in-depth
case study.

TRADITIONAL SOFTWARE DEVELOPMENT

METHODS (TSDMs)

One of well-known traditional software development
methods is the waterfall model. The waterfall model
utilizes a structured progression between defined
phases: planning, analysis, design, implementation,
and maintenance. The planning phase which occupies
typically about 15% of total Systems Development
Life Cycle (SDLC) is the fundamental process to
identify the scope of the new system, understand why
a system should be built, and how the project team
will go about building it through technical,
economical, and organizational feasibility analysis.
The analysis phase, which occupies about 15% of
SDLC, analyzes the current system, its problems, and
then identifies ways to design the new system
through requirements gathering. The design phase
(35%) decides how the system will operate in terms
of hardware, software, and network infrastructure.
The implementation phase (30%) is the actual
programming. The maintenance phase (5%) focuses

www.manaraa.com

Issues and Challenges of Agile Software Development with Scrum

VOL IX, No. 2, 2008 189 Issues in Information Systems

on go-live, training, installation, support plan,
documentation, and debugging [5]. Figure 1 and
table 1 below show a typical waterfall lifecycle and
deliverables respectively. As we can see in the figure
and the table, each phase must be accomplished
before the following phase can begin and each phase
cannot go back to the previous phase like water in the
waterfall cannot climb up once it reaches to lower
position.

Figure 1 Waterfall model lifecycle

Phases Deliverables
Planning Phase Planning Specifications
Analysis Phase Analysis Specifications

Design Phase Design Specifications

Implementation Phase Completed Product

Table 1 Waterfall model deliverables

Over the past four decades, traditional waterfall-style
software development methods have been widely
used for large-scale projects in the software industry
and in the government sector due to their
predictability, stability, and high assurance. As
mentioned earlier, however, TSDMs have a number
of key shortcomings, including slow adaptation to
constantly changing business requirements, and a
tendency to be over budget and behind schedule with
fewer features and functions than specified [2, 6, 16,
19, 21]. Boehm and Phillip [22], and Jones [23] both
reported that during their project development
experience, requirements often changed by 25% or
more. Williams and Cockburn [24] also mentioned
that one of problems of TSDMs is the inability to
respond to change that often determines the success
or failure of a software product.

One interesting research study conducted by the
Standish Group of 365 respondents and regarding
8,380 projects representing companies across major
industry segments, shows that only a small

percentage of projects (16.2%) that used traditional
methods were completed on-time and on-budget with
all features and functions specified. However, 52.7%
of the projects were completed either over-budget,
over the time estimate and/or offering less features
and functions; 31.1% of projects were canceled at
some point during the development cycle [17] (see
Figure 2).

Figure 2 Project resolution (Source: The Standish
Group [17])

To overcome these shortcomings, several
practitioners developed agile software development
methods including Scrum, eXtreme Programming
(XP), Crystal, and Adaptive Software Development
(ASD). The next section explains the characteristics
and principles of agile software development
methods.

AGILE SOFTWARE DEVELOPMENT
METHODS (ASDMs)

The manifesto for agile software development which
was created by seventeen practitioners in 2001
(http://www.agilemanifesto.org), reveals which items
are considered valuable by ASDMs. As shown in
Table 2, ASDMs concentrate more on 1) individuals
and interactions than processes and tools, 2) working
software than comprehensive documentation, 3)
customer collaboration than contract negotiation, and
4) responding to change than following a plan.

More Valuable Items Less Valuable Items
Individuals and
interactions

Processes and tools

Working software Comprehesive
documentation

Customer
collaboration

Contract negotiation

Responding to change Following a plan

Table 2 Manifesto for agile software development

The twelve principles behind the agile manifesto also
present the characteristics of ASDMs
(http://www.agilemanifesto.org/principles.html). As

Planning (15%)

Analysis (15%)

Design (35%)

Implementation (30%)

Maintenance (5%)

www.manaraa.com

Issues and Challenges of Agile Software Development with Scrum

VOL IX, No. 2, 2008 190 Issues in Information Systems

shown in Table 3, ASDMs 1) satisfy the customer
through early and continuous delivery of software, 2)
embrace changing requirements, even in late
development cycle, 3) deliver working software
frequently, 4) work daily with business people, 5)
facilitate motivated people, provide them with good
environment and support, and trust them, 6) assist
face-to-face conversation within a development team,
7) use working software as a primary measure of
progress, 8) promote sustainable development and
keep sponsors, developers, and users moving at a
constant pace, 9) pay attention to technical excellence
and good design, 10) maintain simplicity, 11)
promote self-organizing teams, and 12) foster
inspections and adaptations.

Principles
1 Our highest priority is to satisfy the customer

through early and continuous delivery of
valuable software.

2 Welcome changing requiremts, even late in
development. Agile processes harness change
for the customer’s competitive advantage.

3 Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

4 Business people and devlopers must work
together daily throught the project.

5 Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

6 The most efficient and effective method of
conveying informaiton to and within a
development team is face-to-face conversation.

7 Working software is the primary measure of
progress.

8 Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

9 Continuous attention to technical excellence and
good design enhances agility.

10 Simplicity—the art of maximizing the amount
of work not done—is essential.

11 The best architectures, requirements and designs
emerge from self-organizing teams.

12 At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

Table 3 Principles behind the agile manifesto

The ASDMs have the potential to provide higher
customer satisfaction, lower bug rates, shorter
development cycles, and quicker adaptation to
rapidly changing business requirements [3, 10, 12].

There are many different characteristics between
ASDMs and TSDMs. Boehm [2], for example,
reports nine agile and heavyweight discriminators
(See Table 4). He believes the primary objective of
ASDMs is on rapid value whereas the primary
objective of TSDMs is on high assurance. He also
believes that ASDMs should be used for small teams
and projects. If the size of the team and projects are
large he suggests TSDMs.

Project
Characteristics

Agile
discriminator

Heavyweight
Discriminator

Primary
objective

Rapid Value High
Assurance

Requirements Largely
emergent, rapid
change,
unknown

Knowable
early, largely
stable

Size Smaller teams
and projects

Larger teams
and projects

Architecture Designed for
current
requirements

Designed for
current and
foreseeable
requirements

Planning and
Control

Internalized
plans,
qualitative
control

Documented
plans,
quantitative
control

Customers Dedicated,
knowledgeable,
collaborated,
collocated
onsite
customers

As needed
customer
interactions,
focused on
contract
provisions

Developers Agile,
knowledgeable,
collocated, and
collaborative

Plan-oriented;
adequate skills
access to
external
knowledge

Refactoring Inexpensive Expensive

Risks Unknown risks,
Major Impact

Well
understood
risks, Minor
impact

Table 4 Differences between ASDMs and TSDMs
(Source: Boehm [2])

www.manaraa.com

Issues and Challenges of Agile Software Development with Scrum

VOL IX, No. 2, 2008 191 Issues in Information Systems

SCRUM METHODOLOGY

The Scrum software development process is an agile
process that can be used to manage and control
complex software and product development using
iterative and incremental practices [1] and is an
enhancement of iterative and incremental approach to
delivering objected-oriented software [13]. The
origin of term “Scrum” came from the popular sport
Rugby, in which fifteen players on two teams
compete against each other. Takeuchi and Nonaka
[20] first used rugby strategies to describe hyper-
productive development processes in Japan. Three
strategies from rugby including a holistic team
approach, constant interaction among team members,
and unchanging core team members are adopted into
Scrum management and control processes.

The Scrum process was developed by Schwaber and
Sutherland [15]. The former developed and
formalized the Scrum process for system
development while he was at his company, Advanced
Development methods (ADM), in the early 1990s.
The latter developed many of the initial thoughts and
practices for Scrum when he was at Easel
Corporation as a vice president of Object Technology
in 1994. By a joint effort of both Schwaber and
Sutherland, the Scrum process was first introduced to
public at the conference of Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA) in 1996 [13].

Empirical Process Control

The co-founder of the Scrum process, Schwaber
argues that the Scrum process employs an empirical
process control which has three legs underlying all of
its implementations: transparency (visibility),
inspection, and adaptation [14, 25]. Transparency or
visibility means that any aspects of the process that
affect the outcome must be visible and known to
everybody involved in the process. Inspection
requires that various aspects of the process be
inspected frequently enough so that unacceptable
variances in the process can be detected. Adaptation
requires that the inspector should adjust the process if
one or more aspects of the process are in an
unacceptable range.

A code review can be analyzed with the empirical
process control described above. Any code written by
developers should be visible to everybody
(transparency). The most experienced and
knowledgeable developers can review the code
(inspection). If there is a room to improve the code,

reviewers’ comments and suggestions should be
reflected in the code (adaptation).

Framework of Scrum

The framework of Scrum consists of three
components including roles, ceremonies, and artifacts
[25]. There are three distinct roles in the Scrum
process: the Product Owner, the Team and the
ScrumMaster. The Product Owner is responsible for
getting initial and on-going funding for the project by
creating the project’s overall requirements, return on
investment (ROI) objectives, and release plan [25].
The Team is responsible for implementing the
functionality described in the requirements. Teams
should be self-managing, self-organizing, and cross-
functional to maximize team performance. All of the
team members are responsible for both the success
and the failure of sub-systems and of entire systems
[25]. The ScrumMaster (SM) is responsible for
ensuring that Scrum values, practices, and rules are
enacted and enforced. The SM represents
management and the team to each other [15]. SM
also tries to remove any impediments imposed on
developers.

There are several ceremonies in the Scrum process
including the Daily Scrum Meeting, the Daily Scrum
of Scrums Meeting, the Sprint Review Meeting and
the Sprint Planning Meeting. The Daily Scrum
Meeting (TDSM) is a 15-minute status meeting to talk
about what has been accomplished since the last
meeting, what items will be done before the next
meeting, and what obstacles developers have.
TDSMs facilitate communications, identify and
remove impediments to development, highlight and
promote quick decision-making, and improve
transparency (visibility) as explained in the previous
section. The Daily Scrum of Scrums Meeting
(TDSSM) is another short daily meeting and follows
the same format as a regular TDSM. The main reason
for having TDSSM is to synchronize the work
between multiple Scrum teams. The Sprint Planning
Meeting (TSPM) is a monthly meeting, where the
Product Owner and Team get together to discuss
what will be done for the next Sprint which lasts
usually for 30 days. In TSPM, team members break a
project into a set of small and manageable tasks so
that all the tasks can be completed in one Sprint. The
Sprint Review Meeting (TSRM) is another monthly
meeting which is held at the end of the Sprint. TSRM
is usually a four-hour time-boxed meeting, where
team members present what was developed during
the Sprint to the Product Owner and stakeholders.

www.manaraa.com

Issues and Challenges of Agile Software Development with Scrum

VOL IX, No. 2, 2008 192 Issues in Information Systems

In addition to the Scrum roles and ceremonies, the
Scrum process provides three artifacts namely the
Product Backlog, the Sprint Backlog, and the
Burndown Chart. The Product Backlog is a collection
of functional and non-functional requirements, which
are prioritized in order of importance to the business.
The items in the Product Backlog are created and
maintained by the Product Owner. The Sprint
Backlog is created by team members from the
Product Backlog in a way that the high priority items
in the Product Backlog are first selected and broken
into a set of smaller tasks. When the Product Backlog
items are divided into small tasks, team members
estimate the completion time for each task. Team
members try to make tasks as small as possible so
that every task can be accomplished within three
days. The Sprint Backlog consists of these small
tasks. The Burndown Chart is a graphical
presentation where work remaining is tracked on the
vertical axis and the time periods tracked on the
horizontal axis. The Burndown Chart should be
accessible by every member who participates in the
project.

Flow of Scrum

The Scrum process begins with a vision of the system
and a simple plan on ROI and release milestones. The
vision is described in business terms rather than
technical terms. The vision may be unclear at first but
will become more precise as the project moves
forward. As mentioned earlier, the Product Owner is
responsible for getting initial funding, delivering the
vision while maximizing ROI, and creating the
Product Backlog. The prioritized items in the Product
Backlog are divided into smaller tasks through the
Sprint Planning Meeting and placed in the Sprint
Backlog. In the Sprint Planning Meeting, the Product
Owner explains the content, purpose, meaning, and
intentions of each item in the Product Backlog. Team
members can ask questions if they do not understand
any items in the Product Backlog. All the tasks in the
Sprint Backlog are done through the iteration of the
Sprint which consists of the Daily Scrum Meetings.
Figure 3 illustrates the flow of the Scrum process.

ISSUES AND CHALLENGES OF SCRUM

Several issues and challenges were discovered
through an in-depth case study in a company that has
employed Scrum for many small- and medium-size
web-based projects. Data were collected through a
formal face-to-face interview with nine employees in
the company including a vice president of operations,
a director of operations, a project manager, a
ScrumMaster, and five software engineers. All of the

interviews were audio-taped, transcribed, and later
coded. In the process of data analysis, grounded
theory [7, 8] was used to derive constructs from the
immediate raw data. Some of repeated issues and
challenges are coded below.

Figure 3 Flow of Scrum (Source: Hodgetts [9])

Documentation

The Scrum method, like other agile software
development methods, significantly reduces amount
of documentation [13, 14, 15]. In fact, the agile
methods claim that the code itself should be a
document. That is why developers who are
accustomed to agile methods place more comments
in the code. Several developers mentioned they
placed more explanations for any tricky piece of code
and for any changes that they made. However, many
developers agree that without having any documents,
it is very difficult to complete tasks for those
developers who are working on parts of the system
they never worked on before and also for new
developers who do not have much experience with
the project. For both cases, developers who do not
understand the project ask a lot of questions, which
takes time away from developers who do understand
the project. One developer mentioned that “When I
first got here, of course, I was overwhelmed. It would
have been nice to have some documents that explain
why certain things were done in a particular way and
what they were.” One more developer mentioned that
“Agile methods do not use specification documents. I
think that might be a weakness in agile methods. The

www.manaraa.com

Issues and Challenges of Agile Software Development with Scrum

VOL IX, No. 2, 2008 193 Issues in Information Systems

agile methods allow you to go much quicker as long
as whoever is specifying has a very good idea of
what clients want. If this is not the case, the agile
methods are just as slow as anything else because you
are going to have to get clarification.”

Another developer also raised the issue of the lack of
documentation. He stated “Right now, we have one
guy who is the main guy. He knows all of the
systems and I think, personally, that might be a
mistake. Not because he is not good at it, but because
it just makes one gigantic point of failure if he is hit
by a bus or if he leaves for another company.” It
would take several months for the company to
recover the knowledge that one main developer has.
The idea behind reducing documents in the agile
methods is to keep every team members equal by
sharing skills and knowledge on the systems. In that
way, if one person leaves, there is still a lot of shared
knowledge that has gone around among other team
members, so it is not a big deal. However, in reality,
this is not feasible.

Communication

It is well known that ineffective communication is
the root of most failures in software products [11].
The Scrum process recognizes the important role of
communications in the software development process
and provides an excellent means of communication.
All interviewees agree that the Daily Scrum Meetings
improve communications between team members
within a team. However, each team in the company is
fairly separate and generally there is not much
communication between teams. The lack of
communication between teams could cause problems
such as duplicated work. This problem can be solved
or at least mitigated if the company holds the Daily
Scrum of Scrums Meeting because SMs from each
Scrum team can make sure no work is being
duplicated.

Good within-team and between-team communication
can be accomplished through the framework of
Scrum, but communication with the customer can be
problematic. Several developers mentioned that “the
biggest area of communication issues that we have is
with the customer more than anything else because
they tend to not give us a lot of feedback.” Part of the
reason that the customer does not provide feedback is
that, in most cases, they have other daily jobs to take
care of in addition to the work with developers. This
is related to the customer involvement issue which is
explained in the next section.

Customer Involvement

Customer involvement in the software development
process is very critical to the success of the project.
The agile methods state that the customer should be
part of the development process from analysis and
design to implementation and maintenance. However,
the case study reveals that developers have
difficulties working with customers on the projects.
A project manager mentioned that “Customers are
not involved in the decision making process until it is
all done.” He also stated that “We don’t get as much
customer involvement as we want. Our customers are
busy and they have other things to do than to talk to
programmers all day.” One developer complained
that “We request our customers to talk to us every
day and at least minimum once a week but they are
not very involved so we end up with talking with
maybe twice per Sprint.” Another developer stated
that “Our customers did not give us specification
documents. We basically had an hour-long meeting
to make a specification. So, it was vague when we
started it. It was up to us to make specifics and
estimations. I think the biggest roadblock in our
development process was in the customer
involvement. Though we did not have enough
customer involvement, our customers accepted most
part of the system that we created and asked us for
minor changes. But I think it would be much better if
we get together more often with our customers.”

It seems that, most of the time, customers do not
know what they really want in their future system and
it becomes a roadblock for customers to get involved
in the project development process. One developer
stated that “Customers think they have a clear idea
but they do not. For example, the customer wants to
track people’s credit. To them, that’s clear and
precise. But to us, we need to know who the people
are, what the credits are, when they expire, how long
we track them, what rewards earned for many
credits.” Due to unclear customer requirements,
developers have a hard time figuring out what exactly
the customer wants to include in their system. One
ScrumMaster mentioned “We need to get out a lot of
information from unclear statement, which takes
more time, which causes us to get involved less
because it takes too much time. But we don’t have
any other way to do it because we don’t have
information.”

Working Environment

Most agile methods including Scrum recommend
removing the cubicles and setting up collocated team
space because cubicles promote isolation and the
Scrum process relies heavily on high-bandwidth,

www.manaraa.com

Issues and Challenges of Agile Software Development with Scrum

VOL IX, No. 2, 2008 194 Issues in Information Systems

face-to-face communication, and network [25]. The
open space is considered better than the cubicles and
private offices in the Scrum process. Many
developers like the idea of open-space-working
environment. One developer mentioned “I feel like I
am little closer to other developers in open space. It’s
really nice to be able to look across the room and talk
to somebody else in the team and ask questions
quickly. I don’t feel like I am shouting over the
cubicle wall to get to them.” Another developer
stated that “Open space is good because everyone is
easily accessible. I like it because I think it fosters
communication. It’s very easy to say hey, I need
some help, information, or come, look at this.
Everyone is just kind of opening, and it seems to
work very well.”

Though some developers enjoy the open-space-
working environment, other developers do not like
the open space and they mentioned downsides and
some problems. One developer stated that “the open
areas are very nice to communication but it does hurt
when you try to concentrate because there are a lot of
distractions. For example, when co-workers are
having a conversation with somebody or having a
phone conversation, it’s very distracting.” Another
developer mentioned that “I am less productive
because a lot of noises are going all around. Without
having cubicle walls or private offices, the
distractions are pretty high which is hard to work
with.” A team lead stated that “You know the best
working environment is an office. In your private
office, you can do things your way, and focus on
things without being distracted by other noises.”

To cancel out the noises, most developers use
headphones. The director of operations stated that
“Everybody has headphones and they can just put
those on and listen to something. That pretty much
drowns everything else out. However, several
developers complain that “We, developers, are
usually working while listening to music. We all have
a nice headphones workout. Everything is going
under that. But if I need to focus on something, that’s
really difficult just because I have headphones on.”

Scrum Ceremonies

Scrum ceremonies including the Daily Scrum
Meeting, the Sprint Planning Meeting, and the Sprint
Review Meeting, seemed to help software engineers
develop high-quality systems. Most developers
testified that the Scrum ceremonies have been very
useful and very productive. Several developers
mentioned that “the 15-minute standup Daily Scrum
meeting has allowed us to be on the same page

because we can talk to each other and everybody
knows what everybody else is working on.

However, some developers talked about inefficient
Sprint Planning and Review Meetings. One developer
argued that “Some of our Sprint Meetings are so
simple and it seems to be a waste of time spending a
whole day just for planning and review. I think it
needs to be adjusted based on the complexity of the
project that we are working on.” Another developer
mentioned that “Our daily standup Scrum meetings
sometimes go on a little longer just because
everybody is talking about what they did last night. I
think there probably are some good advices on trying
to keep your daily standup meetings consistent and
short so that people are not distracted and they can go
back to work quickly as most people would rather
work productively than waste a time.” Another issue
is related to setting up the meeting time. Due to the
flexible work schedule among developers, it is
difficult to get together all at one time. One developer
stated that “I think the hard things for us in Scrum is
when to do it because some of us get in at 7:30 am
and some of us at 9:30 am. So as a team, we just have
Scrum as soon as everyone gets in. That’s usually at
ten or eleven. The problem is that those who get in
early are interrupted from their work because they’ve
been working for two or three hours very well. They
are in the group or zone so being interrupted and it’s
frustrating. We talked about doing it at the end of the
day but that also has a problem because some people
come in at 6:30 am and leave at 3:30 pm, and some
people come in at 9:30 am and leave at 6:30 pm. It
makes hard for our team to get together all at one
time.”

CONCLUSIONS

Agile software development methods were developed
to provide more customer satisfaction, to shorten the
development life cycle, to reduce the bug rates, and
to accommodate changing business requirements
during the development process. This paper presents
characteristics of traditional software development
methods and agile software development methods,
and the differences between them. This paper also
introduces the roles, ceremonies, and artifacts of
Scrum, which is one of the most well-known agile
software development methods in the industry. This
paper also presents five issues and challenges
including documentation, communication, user
involvement, working environment, and Scrum
ceremonies, discovered through an in-depth case
study in a software company that makes small- and
mid-size web-based applications. If the five issues
and challenges are addressed and resolved before the

www.manaraa.com

Issues and Challenges of Agile Software Development with Scrum

VOL IX, No. 2, 2008 195 Issues in Information Systems

project is launched, organizations will have fewer
difficulties in producing high-quality software
products using Scrum.

--
The author wants to thank Dr. Sherry Marx at Utah
State University for her insightful advice on a
qualitative research method.

REFERENCES

1. Advanced Development Methods, Inc. (2007).

Scrum, Retrieved March 19, 2008, from
http://www.chaos.com.

2. Boehm, B. (2002, January). Get ready for agile
methods with care. IEEE Computer, 35(1), 64-
69.

3. Boehm, B. & Turner, R. (2003, June) Using risk
to balance agile and plan-driven methods. IEEE
Computer, 36(6), 57-66.

4. Brooks, F. P. (1995). The mythical man-month.
Reading, MA: Addison-Wesley.

5. Dennis, A., Wixom, B. H., & Tegarden, D.
(2005). Systems analysis and design with UML
version 2.0. Hoboken, NJ: Wiley.

6. Fruhling, A. & Vreede, G. (2006). Field
experiences with extreme programming:
Developing an emergency response system.
Journal of Management Information Systems,
22(4), 39-68.

7. Gall, D. M., Gall, P. J., & Borg, R. W. (2003).
Educational research: An introduction. Boston,
MA: Allyn and Bacon.

8. Glesne, C. (2006). Becoming qualitative
researchers: An introduction. Boston, MA:
Allyn and Bacon.

9. Hodgetts, P. (2005). Product development with
Scrum. Retrieved March 1, 2008, from
http://www.agilelogic.com.

10. Miller, K., & Larson, D. (2005, winter). Agile
software development: Human values and
culture. Technology and Society Magazine,
IEEE, 24(4), 36-42.

11. Parnas, D. (2006). Agile methods and GSD: The
wrong solution to an old but real problem.
Communication of the ACM, 49(10), 29.

12. Parrish, A., Smith, R., Hale, D., & Hale, J.
(2004). A field study of developer pairs:
Productivity impacts and implications. IEEE
Software, 21(5), 76-79.

13. Schwaber, K. (1996). SCRUM development
process. Proceedings of ACM SIGPLAN on
Objected-Oriented Programming, Systems,
Languages, & Applications (OOPSLA ’96), San
Jose, California.

14. Schwaber, K. (2007). What is Scrum? Retrieved
March 5, 2008, from
http://www.scrumalliance.org/system/resource/fi
le/275/whatIsScrum.pdf.

15. Schwaber, K., & Beedle, M. (2002). Agile
software development with Scrum, Upper Saddle
River, NJ: Prentice Hall.

16. Schach, S. R. (2004). An introduction to object-
oriented systems analysis and design with UML
and the unified process. Boston: McGraw-Hill.

17. Standish Group (1994). The chaos report.
Retrieved March 6, 2008, from
http://www.standishgroup.com/sample_research/
chaos_1994_1.php.

18. Stazinger, J. W., Jackson, R. B., & Burd, S. D.
(2005). Object-oriented analysis & design with
unified process. Boston: Thomson Course-
Technology.

19. Summerville, I. (2004). Software Engineering.
Boston: Addison-Wesley.

20. Takeuchi, H., & Nonaka, I. (1986, January-
February). The new new product development
game. Harvard Business Review, p137-146.

21. Watson, R. T., Kelly, G., Galliers, D., &
Brancheau, C. (1997). Key issues in information
systems management: An international
perspective. Journal of Management Information
Systems, 13(4), 91-115.

22. Boehm, B. & Papaccio, P. (1988).
Understanding and controlling software costs.
IEEE Transactions on Software Engineering,
14(10), 1462-1477.

23. Jones, C. (1997). Applied software
measurements: Assuring productivity and
quality. McGraw Hill.

24. Williams, L. & Cockburn, A. (2003, June). Agile
software development: It’s about feedback and
change. IEEE Computer, 36(6), 39-43.

25. Schwaber, K. (2004). Agile project management
with Scrum. Redmond, WA: Microsoft Press.

